Similarly, \begin {align*} a+b+c+d &=(a+b+c)+d & \text {(Definition 3.)}\\ &= d+(a+b+c) & \text {(Axiom II)}\\ &= d+((a+b)+c) &\text {(Definition 3.)}\\ &= d+(a+(b+c)) & \text {(Axiom III)}\\ &= d+(a+(c+b)) & \text {(Axiom II)}\\ &= d+((a+c)+b) & \text {(Axiom III)}\\ &= d+(a+c+b) & \text {(Definition 3.)}\\ &= d+a+c+b & \text {(Definition 3.')} \end {align*}
For multiplication, we have the expression \(abcd\), which is equal to \(cbad\) and \(dacb\). \begin {align*} abcd &= (abc)\cdot d & \text {(Definition 3.)}\\ &= ((ab)\cdot c)\cdot d & \text {(Definition 3.)}\\ &= (c\cdot (ab))\cdot d & \text {(Axiom II)}\\ &= (c\cdot (ba))\cdot d & \text {(Axiom II)}\\ &= ((cb)\cdot a)\cdot d & \text {(Axiom III)}\\ &= (cba)\cdot d & \text {(Definition 3.)}\\ &= cbad & \text {(Definition 3.)} \end {align*}
Similarly, \begin {align*} abcd &= (abc)\cdot d & \text {(Definition 3.)}\\ &= d\cdot (abc) &\text {(Axiom II)}\\ &= d\cdot ((ab)\cdot c) &\text {(Definition 3.)}\\ &= d\cdot (a\cdot (bc))) & \text {(Axiom III)}\\ &= d \cdot (a\cdot (cb)) & \text {(Axiom II)}\\ &= d\cdot ((ac)\cdot b) & \text {(Axiom III)}\\ &= d \cdot (acb) & \text {(Definition 3.)}\\ &= dacb & \text {(Definition 3.')} \end {align*}
This contradicts our assumption that \(x\neq 0\), thus, \(xy\neq 0\)
Hence, \((xy)^{-1} =x^{-1}y^{-1}\). \(x\) or \(y\) cannot be \(0\), as in both cases, \(xy=0\), which does not have a multiplicative inverse.
By (iii), and (i), thus we have the result.
Now, for addition, \begin {align*} \frac {a}{x} +\frac {b}{y} &=ax^{-1} + by^{-1} & \text {(Definition)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot x &= (ax^{-1}+by^{-1})\cdot x & \text {(Corollary 2)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot x &= ax^{-1}\cdot x + by^{-1}\cdot x &\text {(Axiom VI)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot x &= a\cdot 1 + by^{-1}\cdot x & \text {(Axiom V)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot x &= a + by^{-1}\cdot x & \text {(Axiom IV)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot (xy) &= (a+ by^{-1}x)\cdot y & \text {(Corollary 2)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot (xy) &= ay + by^{-1}xy & \text {(Axiom VI)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot (xy) &= ay + bxy^{-1}y & \text {(By (i))}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot (xy) &= ay + bx \cdot 1 & \text {(Axiom V)}\\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot (xy) &= ay+bx & \text {(Axiom IV)} \\ \left (\frac {a}{x} +\frac {b}{y}\right )\cdot (xy) \cdot (xy)^{-1} &= (ay+bx)\cdot (xy)^{-1} & \text {(Corollary 2)}\\ \left (\frac {a}{x} +\frac {b}{y}\right ) \cdot 1 &= (ay+bx)\cdot (xy)^{-1} & \text {(Axiom V)}\\ \frac {a}{x} +\frac {b}{y} &= (ay+bx)\cdot (xy)^{-1} & \text {(Axiom IV)}\\ \frac {a}{x} +\frac {b}{y} &= \frac {ay+bx}{xy} & \text {(Definition)} \end {align*}
When \(x=a\) and \(y=b\), we have: \begin {align*} (a+b)(a+b) &= a\cdot a + b\cdot a + a\cdot b+b\cdot b & \text {(By (vi))} \\ &= a^2+a\cdot b + a\cdot b + b^2 & \text {(Axiom II)}\\ &= a^2 + 1\cdot (a\cdot b) + 1\cdot (a\cdot b) + b^2 & \text {(Axiom IV)}\\ &= a^2 +(1+1)\cdot (a\cdot b)+b^2 & \text {(Axiom VI)}\\ &= a^2 + 2ab +b^2 & \text {(Definition of ``2'')} \end {align*}
When \(x=a\) and \(y=b\), we have, by the current formula: \begin {align*} (a+b)(a-b) &= a\cdot a+ b\cdot a-a\cdot b-b\cdot b\\ &= a^2 + b\cdot a-a\cdot b-b^2 & \text {(Definition)}\\ &= a^2+ a\cdot b - a\cdot b - b^2 & \text {(Axiom II)}\\ &= a^2 +0-b^2 & \text {(Axiom V)}\\ &= a^2 -b^2 & \text {(Axiom IV)} \end {align*}
Assume for a \(k\) term expression we have \((a_1+a_2+...+a_k)x= a_1x+a_2x+...+a_kx\). Then, for the \(k+1\) term expression, we have: \begin {align*} (a_1+a_2+...a_k+a_{k+1})x &= ((a_1+a_2+...+a_k)+a_{k+1})x & \text {(Definition)}\\ &= (a_1+a_2+...+a_k)x + a_{k+1}x & \text {(Axiom VI)}\\ &= a_1x+a_2x+...+a_kx +a_{k+1}x & \text {(Inductive Hypothesis)} \end {align*}
Hence, the equation holds for \(k+1\) term expression if it holds for a \(k\) term expression, because the equation is shown to hold for a \(3\) term expression, by induction, it holds for all \(k\geq 3\) term expression including \(4\) and \(5\) term expressions.
similarly, \begin {align*} x^4>y^4\geq 0\;\;\text {(where $x^4=x^3x$).} \end {align*}
But, if \(1<0\), then by the monotonicity of multiplication, we have \(x<0\), which contradicts our premise. Hence \(x^{-1}\) is either \(0\) or greater than \(0\), by the trichotomy of an ordered field. But, if \(x^{-1}=0\), then \begin {align*} x^{-1}&=0 \\ x^{-1}\cdot x &= 0 \cdot x & \text {(Corollary 2)}\\ x^{-1}\cdot x &=0 &\text {(Corollary 5)}\\ 1&=0 & \text {(Axiom V)} \end {align*}
But, if \(1=0\), then, by Corollary 2 and 5, we have \(x=0\), which again contradicts our premise. Hence, by the trichotomy of an ordered field, \(x^{-1}>0\) when \(x>0\).
Similarly, applying Corollary 8, we get \(x^3>y^3\), Then because \(x^2>0\), \(x^3>0\) by Axiom IX and Corollary 5. Similarly \(y^3\geq 0\), Hence \(x^3>y^3\geq 0\). With the same reasoning, we also get \(x^4>y^4\geq 0\).
By, (i), Hence, Multiplying both sides of the inequality, \(x>y\) by \(x^{-1}\) and \(y^{-1}\), by the monotonicity of multiplication (Axiom IX), we get: \begin {align*} x&>y\\ 1&>yx^{-1}\\ y^{-1}&>x^{-1}. \end {align*}
If \(x>0>y\), \(x^{-1}>0\) by (ii), but, \(y^{-1}<0\), but by Corollary 7, \(-y^{-1}\) would be positive. Hence, by monotonicity of multiplication (Axiom IX), \begin {align*} x&>y\\ 1&>yx^{-1}\\ -y^{-1}&> -x^{-1}\\ x^{-1}&>y^{-1} \end {align*}
Similarly, if \(0>x>y\), then \(-x^{-1}\) and \(-y^{-1}\) are positive, hence by the monotonicity of multiplication, \begin {align*} x&>y\\ -1&>-yx^{-1}\\ y^{-1}&>x^{-1} \end {align*}
The same reasoning applies for an \(k\) term sum.